A Fast Dimension-Sweep Algorithm for the Hypervolume Indicator in Four Dimensions

نویسندگان

  • Andreia P. Guerreiro
  • Carlos M. Fonseca
  • Michael T. M. Emmerich
چکیده

The Hypervolume Indicator is one of the most widely used quality indicators in Evolutionary Multiobjective Optimization. Its computation is a special case of Klee’s Measure Problem (KMP) where the upper end of all rectangular ranges coincides with a given reference point (assuming minimization, without loss of generality). Although the time complexity of the hypervolume indicator in two and three dimensions is known to be Θ(n log n), improving upon the O(n log n) complexity of Overmars and Yap’s algorithm for the general KMP in higher dimensions has been a challenge. In this paper, a new dimension-sweep algorithm to compute the hypervolume indicator in four dimensions is proposed, and its complexity is shown to be O(n).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximating the Least Hypervolume Contributor: NP-Hard in General, But Fast in Practice

The hypervolume indicator is an increasingly popular set measure to compare the quality of two Pareto sets. The basic ingredient of most hypervolume indicator based optimization algorithms is the calculation of the hypervolume contribution of single solutions regarding a Pareto set. We show that exact calculation of the hypervolume contribution is #P-hard while its approximation is NP-hard. The...

متن کامل

Time Complexity and Zeros of the Hypervolume Indicator Gradient Field

In multi-objective optimization the hypervolume indicator is a measure for the size of the space within a reference set that is dominated by a set of μ points. It is a common performance indicator for judging the quality of Pareto front approximations. As it does not require a-priori knowledge of the Pareto front it can also be used in a straightforward manner for guiding the search for finite ...

متن کامل

HypE: An Algorithm for Fast Hypervolume-Based Many-Objective Optimization

In the field of evolutionary multi-criterion optimization, the hypervolume indicator is the only single set quality measure that is known to be strictly monotonic with regard to Pareto dominance: whenever a Pareto set approximation entirely dominates another one, then the indicator value of the dominant set will also be better. This property is of high interest and relevance for problems involv...

متن کامل

Approximation quality of the hypervolume indicator

In order to allow a comparison of (otherwise incomparable) sets, many evolutionary multiobjective optimizers use indicator functions to guide the search and to evaluate the performance of search algorithms. The most widely used indicator is the hypervolume indicator. It measures the volume of the dominated portion of the objective space bounded from below by a reference point. Though the hyperv...

متن کامل

Hypervolume-Based Search for Multiobjective Optimization: Theory and Methods

xi Zusammenfassung xiii Statement of Contributions xv Acknowledgments xvii List of Symbols and Abbreviations xvii  Introduction  . Introductory Example . . . . . . . . . . . . . . . . . . . . . . . .  .. Multiobjective Problems . . . . . . . . . . . . . . . . . . .  .. Selecting the Best Solutions . . . . . . . . . . . . . . . . .  .. The Hypervolume Indicator . . . . . . . . . ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012